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The changes in the conducting properties of a porous medium when a fluid with suspended solid particles moves through it are 
investigated. A model system of equations is presented, a class of exact solutions is obtained for initial problem and of the initial- 
boundary-value problem. A comparison is made with experiment using the example of the percolation of a suspension into a 
pure uniform sample. It is shown that the model considered describes, qualitatively correctly, the behaviour of the main parameters 
of the porous medium and the flow of the suspension during colmatage (silt deposition). © 1999 Elsevier Science Ltd. All rights 
reserved. 

The phenomenon of the trapping by a porous medium of particles suspended in a fluid flow (colmatage) 
must be taken into account when solving many important practical problems. These include the problem 
of purifying liquids from impurities by faltering, the investigation of the deposition of clay particles from 
the filtrate of drilling fluid on the surface of an oil well and in the preborehole region of the layer when 
drilling gas and oil wells and a number of other problems [1-3]. The investigation of these phenomena 
is usually based on various approximate relations. 

The model presented below is based on exact balance relations, it extends existing approaches to the 
investigation of the problem considered, and it takes into account the effect of the seepage rate on the 
kinetics of the eolmatage and the presence of dead-end pores in the porous medium. Section 1 is devoted 
to deriving a system of differential equations for the changes in the porosity of the medium and the 
concentration of the solid phase of the suspension. In Section 2 solutions of simple form are described, 
which, for a certain choice of the parameters occurring in it, turn out to be asymptotic solutions of the 
initial-boundary-value problem. The exact solutions of the initial-value problem and the initial-boundary- 
value problem for a general form of initial and boundary data are constructed in Sections 3 and 4, 
respectively. The solutions have been well known for approximate or linearized equations. The model 
employed is compared with experiment in Section 5. 

1. D E S C R I P T I O N  OF THE MODEL 

Suppose c is the volume density of particles in the flow of the suspension, v is the seepage rate and 
m is the porosity of the medium, which are the required functions of the point x and the time t. The 
velocities of the suspended particles and of the fluid carrying them are assumed to be the same, and 
the particles themselves, the fluid and the porous medium in its initial state are assumed to be 
incompressible. 

As time passes the suspended particles may remain in the flow or be retained in the porous medium, 
shutting off the entrances to the pores. In this case, if a pore has several entrances and exists, it remains 
accessible to the flow. Otherwise it is bound into the framework of the porous medium, extracting the 
particle from the flow and the corresponding fluid volume. The framework of the porous medium formed 
in this way remains incompressible. The contribution of such (dead-end) pores is characterized by the 
parameter x: the trapping of particles by each unit volume leads to the formation of 1 + × volumes of 
the framework of the porous medium. The value of this parameter is proportional to the volume fraction 
(in units of volume of the porous space) of dead-end pores. 

Under these conditions the balance of the volume of the solid phase (in the suspension and retained 
by the porous medium) is written in the form 
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d 1 ~'~[mc + 1-~"~x (too - m ) ~  = - .1" cv" rids 

where ~ is an arbitrarily fixed region of space, ~f~ is its boundary with outward normal n, and mo is the 
specified initial porosity distribution. 

The volume balance of the fluid (in the flow and that cut off from it during colmatage) requires the 
following equation to be satisfied 

~-J im( l -c)+ l - ~ x ( m o - m ) ~ = - i ' ( 1 -  c)v. rids 

In the region of a smooth change in the required functions, these integral relations are equivalent 
to the following system of differential equations 

O(mc) l at + div vc = (1 + x)-t  am l Ot (1.1) 

a(m(l - c)) I at + div v( l  - c) = ~(I + ~)-i  am I at (1.2) 

A consequence of these equations is the suspension-volume balance equation 

div v = 0 (1.3) 

Analogues of system (1.1), (1.2), at various approximation levels, are available only for the case when 
× = 0. Equations differing from (1.1) and (1.2) in having no terms with partial derivatives with respect 
to time on the left-hand sides have been used in [1]; Eq. (1.3) was assumed to be satisfied. An equation 
corresponding to (1.1) was written in [4, 5] in non-divergent form, but if Eq. (1.3) is used, an equation 
of the form (1.1) with a negative value of × = (m/mo + 1) -1 - 1 occurs. In the conditions of 
incompressibility, assumed in [6, 7], the solid-phase balance equation is identical with (1.1), but Eq. 
(1.3) contains an additional term &n/&. Equation (1.1), written in different terms, was presented in [8] 
for the case when × = 0. 

The equation of colmatage kinetics, which relates the rate of porosity change to the flow parameters, 
is often taken in the form [1, 6, 7] 

am fOr = -~rac 

where ~, is a certain constant. The drawback of this scheme is that trapping of the particles always occurs 
when m and c are non-zero. Kinetics of a more general form 

aP/at = a ( A  - P)c 

have also been used [8], where P is the volume fraction (per unit of space volume) of particles trapped 
by the porous medium, A is its maximum possible value and a is a constant. The latter, in practice, 
depends on the seepage rate, since it is not the value of the concentration itself but the value of the 
whole particle flux ] vc I which affects the colmatage intensity. 

We will use the linear dependence of ct on the modulus of the seepage rate and, taking into account 
the fact that, in reality, P - m0 - m, we will write the colmatage kinetics equation in the form 

a m l a t = - - ( l + x ) [ J u c ( m - m . ) ,  u =lvl (1.4) 

The constant 13, which has the dimension L -l, is proportional to the number of trappings of a suspended 
particle by the porous medium, referred to the traversed path. The minimum possible value of the 
porosity m. during colmatage is due to the presence of the connected system of pores, the diameter of 
which exceeds the dimensions of the suspended particles. Both 13 and m. depend on the fractional 
properties of the suspension and the structure of the porous space, but no systematic investigations of 
this have been made. 

We will assume that the flow of the suspension obeys Darcy's law [1, 6-8] 

v = --qa~O v p (1.5) 

with a suspension viscosity ix, a pressure in the suspension p and a permeability of the porous medium 
k, related to the porosity m by the power law 
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k = ko(m/mo) n (1.6) 

Here ko and m0 are the initial values of k and m respectively, while the exponent n lies in the range 
2 < n  <419] .  

In order to compare the conclusions obtained using this model with experimental results, we will 
henceforth consider a special case of system (1.1)-(1.6). Namely, we will assume that × = 0, p. = const, 
the flow is one-dimensional, and thex axis is directed along the flow. By relation (1.3) the seepage rate 
in this case depends only on time. We will also assume that v = const and we will use Eqs (1.5) and 
(1.6) to establish how the pressure depends onx  and t. Note that most of the discussion here remains 
true for the specified dependence v(t)  or × > 0. 

Hence, below we will be concerned with the following system of equations 

mc~c/'dt + uac]"dx =--~vc( l -  c)(m-m.) 
(1.7) 

~mfJt = --~uc(m - m,) 

2. P A R T I C U L A R  S O L U T I O N S  

We will seek solutions of system (1.7) of the form 

m = m(~), c = c(~), ~ =x-or (2.1) 

where o is the required constant. Such solution are, firstly, fairly simple, and if the parameters m* and 
c. occurring in them are chosen in the required way, they become, as will be shown in Section 5, 
asymptotic solutions of the initial-boundary-value problem. Secondly, the states corresponding to them 
characterize, to a considerable extent, the internal properties of the model itself and the constant 
described, in which a certain equilibrium is established between the inflow of the particles with the flow 
of the suspension and their trapping by the porous medium. 

As follows from (1.7) and (2.1), the functions m(~) and c(~) satisfy the system of equations 

- o m c "  +vc" = -~oc ( l  - c)(m - m. ) ,  ore" = t~vc (m-  m , )  (2.2) 

It follows from this that ore(1 - c )  + vc =-- ore* (the right-hand side of this identity corresponds to the 
satisfaction of the conditions c ---) 0, m -~ m., 0 < m* < 1 as ~ --> + oo). Hence, the concentration c is 
expressed in terms of m and a in the form 

C = ( m *  - m ) ( v / O  - m) -I 

For the general case c(-oo) ¢ 0 the requirement that the solution of system (2.2) should "flatten out" 
as ~ --> --~ denotes that here c ~ c. and m ~ m., for a certain value of c., 0 < c. < 1. Hence, the 
propagation velocity o of this wave must be defined by the following expression, which has a fairly simple 
physical meaning 

o = (uc,)/(ra" - ra, + re,c.)  (2.3) 

It follows from system (2.2) and the representation of the concentration in terms of the porosity and 
the velocity of the wave obtained earlier, that 

(v/6 - ra)(ra - m,)-I(m" - m)qm" = [$v/a 

Solving this equation and using (2.3) we obtain 

m - r e .  
m'~l-~, ~m -m, =expt~h~,(~-~,)v/0] 

where ml is the porosity value for a certain ~ -- ~1. 
We will now introduce a function s(~) instead of m(~) by the rule 

s = (ra - m , ) / ( m "  - m , )  (2.4) 
Assuming then that ~1 = 0 and choosing sl - s(ml) in a corresponding way we obtain the following 
equation for s(~) 
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s ( 1  - s)'*-I = d(~) - exp(l~c.~v / o), 0 < s < 1 (2.5) 

c -- c , ( l -  s)(1 - c.s) -! (2.6) 

Solution (2.4)-(2.6) possesses one characteristic property, namely, it follows from (2.4), (2.2) and (2.6) 
that 

s'  = I~u o - I t . s (1  - s ) ( 1 -  c.s) -! 

c"  = ~u o- l  d (1 - c. X c, s 2 +2(1 - c. )s - IXl - c.s)-4 s" 

Hence, the function c(~) decreases monotonically and its graph will be convex upwards when ~ < ~c 
and convex downwards when ~ < ~ if ~ is such that 

2 , - I  • 

This feature is also characteristic for the majority of experimental concentration distribution curves 
in the sample. 

3. THE CAUCHY PROBLEM 

An investigation of the initial-boundary-value problem corresponding to the experimental conditions 
first requires a consideration of the Cauchy problem--the establishment from the initial data 

m(x, O) = mo(x), c(x, O)= co(x) (3.1) 

of the solution of system (1.7) in the half-plane (0 < t, --~ < x < + oo}. We will use the method of 
characteristics to construct the solution of the latter. 

Suppose s = ~(t, x0) is the characteristic of the first equation of system (1.7), emerging from the point 
(x0, 0) and arriving at the point (x, t). It is defined as the solution of the differential equation dx/dt = 
v/m with the condition ~(0, x0) = x0 and the required values of the porosity m(x, Xo) on this curve. The 
latter can be obtained from the following considerations. 

If dm/dt ~ g(t, Xo) on this curve, then, firstly, g = bn/Ot + vm-ligrn/~x. Further, integration of the second 
equation of system (1.7) with respect to t for a fixed value ofx = ~(t, x0), shows that 

ra(x , t )=m.  +(mo(x0)-m°)ex - v 

Hence, by Eq. (1.1) 

g = [m~/(,,Io - m . )  + IknoO - c o ) -  13m]u (m - m . ) / m  

We now replace the parameter t along the characteristic byx and substitute the representation obtained 
for the function g into the fight-hand side of the differential equation dm/dx = mg/v. Solving this equation 
and using initial conditions (3.1), we find that on the curve x = ~(t, x0) 

m(x, x o ) f  m, +dP(X, Xo)l 1+ Y, Xo (3.2) 

where 

(3.3) 

To determine the values of the concentration on the characteristic we will use the fact that the 
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differential relation (c -1 + (1 -c)- ldc = -fl(m -m.)dx exists on it. Substituting the values obtained for 
the porosity into it, integrating and taking into account initial conditions (3.1) we conclude that when 
x = ~(t, x0) 

The equation of the characteristic itself, emerging from the point (x0, 0), can then be written in the 
form 

x 

ut = J m(y, xo)dy (3.5) 
.¢o 

Omitting the details, we note that the solution of Cauchy problem (3.2)-(3.5) with the natural limits 
0 < m. <- mo(x), 0 < Co(X) < 1 on the initial data (3.1) will be defined over the whole half-plane 0 < 
t. The equation of the characteristics (3.5) can be solved for x0, while the solution of the problem can 
be represented in the form m = m(x, t), c = c(x, t). For continuous mo(x) and Co(X) the solution is 
continuous together with the derivative am/Ot. If Co(X) is a smooth function, c(x, t) will also be smooth. 

It can be shown that moving discontinuities of the solution only arise due to a discontinuity of the 
initial concentration values. On passing through them, as follows from the integral balances of the fluid- 
and solid-phase volumes, represented in Section 1, and the stability conditions, the seepage rate and 
the porosity retain their continuity. A discontinuity of this type is characteristic of the first equation of 
system (1.7). Fixed discontinuities are only possible when there is a sudden change in the function mo(x). 
On passing through them the seepage rate and the concentration remain continuous, but the construction 
of the corresponding solution requires investigations of the initial-boundary-value problem. 

4. THE I N I T I A L - B O U N D A R Y - V A L U E  PROBLEM 

For system (1.7) we will consider the problem with initial conditions (3.1), satisfied when 0 < x, and 
the boundary condition 

c(0, t) = cO(t) when O< t (4.1) 

The quadrant {0 < x, 0 < t}, in which we have to determine the solution, is split into two subregions: 
co+ = {~(t, 0) < x, 0 < t}, where x = ~(t, 0) is the limiting characteristic, obtained from (3.2)-(3.5) 
when x0 approaches zero there from the right; co_ is the remaining part of the quadrant. In the region 
to+ a solution is uniquely defined by the initial conditions and is described by representations (3.2)--(3.5). 
When constructing the solution in the region to_ we will use considerations analogous to those described 
in Section 3. 

Suppose Ka(x) is the porosity value on the curve x -- ~(t, 0), obtained from (3.2) and (3.3) if we take 
x0 = 0 there. On the characteristic x -- g(t, 0) of the first of the equations of system (1.7), emerging 
from the point (0, to), the porosity m takes values m(x, to), which, as in the Cauchy problem, satisfy the 
equation (we recall that d/dx denotes differentiation with respect to x along the characteristic) 

dm/ dx =(m-ra,)[g-~(m-ra,)],  g = m" / (~-rm ) + ~ - r a , )  

Integration of this shows that, on this curve 

ILl 
m - m. re(O, t o ) - In. 

We will express the values of m and m(0, to) occurring in this representation in terms of the initial 
and boundary data. To do this we first note that, according to Section 3, m(x) is the solution of the 
differential equation 

a m / , / ~  = ( m -  ~ ) 1 . ~ / ( ~  - . u ) + ~ O - c o ) - . u ] -  ~ m - ~ ) }  
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which satisfies the initial condition m(0) = m0(0). Hence it follows that 

g ffi ~ / ( , n o  - ,n.) + [~mo(1 - C o ) - , , * . ]  

and hence the porosity values on the curve x = ~(t, to) can be represented in the form 

f ! ] m = m.  + h(x  • I ~- ~ h(y)dy  
m(0,to)- m, 

h(x) = ~ x ,  0)/(too(0) - m.) 

with O(x, x0) from (3.3). We now integrate the second equation of system (1.7) with respect to t from 
t = 0 to t = t0 with fixed x = 0. Using boundary condition (4.1)we conclude that 

to 
m(0,to) = m. + ( ,~ (0 ) -  m . ) e x p ( ~ v  I c°(~)d~) 

0 

Substituting these values into the representation for the porosity obtained above, we find that on the 
characteristicx = ~(t, to) 

[" to 0 x -]-l 
m(x ,  t o ) f m ,  +qlP(x,O~exp(pv Ic  (x )+pI y,O)dy / 

L o o j 
(4.2) 

From the differential relation between the porosity and the concentration given in Section 3, which 
holds on any characteristic, we also obtain from condition (4.1) that on the curve x = ~(t, to) 

x - I  

(4.3) 

Finally, the characteristic itselfx = ~(t, to) is defined by the equation 

X 

u (t  - t o) = J re(y, t o)dy (4.4) 
0 

which also completes the construction of  the required solution. 
Omitting the calculations, we note the following properties of the solution obtained, which hold for 

the natural constraints on the initial data (3.1) indicated in Section 3, and under the condition that in 
(4.1) 0 < c°(t)  < 1. Firstly, Eq. (4.4) is solvable for to. Secondly, the curve defined by this equation when 
to = 0 coincides with the curve x = ~(t, 0) from (3.5). Hence solution (4.2)-(4.4), (3.3) is defined 
everywhere in co_. In this region, for continuous mo(x)  and c°(t) it is continuous, exists and the derivative 

0 0m/0t is continuous. For smooth c (t) the function c(x, t) is also continuously differentiable in co_. If 
c°(t)  suffers a discontinuity for a certain t = t., it will be continued along the characteristic emerging 
from the point (0, t.). When c ° (0 ) ,  c0(0) a discontinuity occurs in the concentration on passing through 
the characteristicx = ~(t, 0) separating the regions COl and to+. Finally, if there is a sudden jump in the 
porosity on the x axis at x = x., it will be present for all 0 < t at points (x., t). In this case, the solution 
is initially constructed in the strip {0 < x < x., 0 < t}, from which the values c(x. ,  t) are determined, it 
is substituted into conditions (4.1) and the solution is then found in the quadrant {x. < x, 0 < t}. 

5. C O M P A R I S O N  W I T H  E X P E R I M E N T  

As an example we will consider the problem of the penetration of a suspension with a specified constant intensity 
into an initially pure porous sample of length L. In this case re(x, O) = mo = eonst, c(0, t) --- c o ffi const and v = 
const. Since c(x, O) = Co =- O, by virtue of (3.2)-(3.4) everywhere ahead of the penetration front c(x, t) = 0 and 
re(x, t) = mo. The  characteristics of the first equation of system (1.7) are straight lines, and the position of the 
front is defined by the equation x = vt/mo. 

It can be shown that, for the case considered, representation (4.2)-(4.4), (3.3) of the solution in the region 
{moz < vt, 0 < t} reduces to the form 
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m = m, + s(m 0 - m.) ,  c = c°(!  - a s ) / ( l  - c°as)  (5.1) 

The function s(x, t) is found from the equation 

F(s;a,b) = s I/(l-c°) - ( 1 - a s ) b  = 0, 0 < s < 1 

a = 1 - exp[-~(mo - m.)x] (5.2) 

b = exp[~(m 0 - m , ) x -  Dc°(ut - m0x)/(1 - cO)] 

The unique solvability of the latter follows from the monotonicity of F with respect to s and the inequalities 
F(G; a, b) = - b  < 0, 0 < F(1; a, b) = 1-(1-a)b,  since on the front m0~ < ~t. 

We will show that the solutions derived in Section 2 are asymptotic. To do this we write Eq. (5.2) in the form 

s ( l - a s ) C ° - t = e x ~ ( m ° - m ' + c ° m * f x - m  o - m.C°Ut+ c°m, ]} 

Its right-hand side and the right-hand side of Eq. (2.5) will be equal if we put m* = rn0, c. = c o and define the 
velocity of the wave a from (2.3). With this choice, the definitions (2.4) and (5.1) for the function s are identical. 
The left-hand sides of these equations will differ only in the factor a: in (2.5) a = 1 and in (5.2) it depends onx.  
But at a sufficient distance from the entry of  the sample a ~ 1, and here not only will the values o f s  defined by 
Eqs (2.5) and (5.2) be the same, but also expressions (2.6) and (5.1) for the concentration. This is also the reason 
why the flow reaches a simple-wave mode, as has been observed in a number of experiments. 

Further, we will use the dimensionless parameters m./mo, ~moL, omoA) and the variables x/L, (gt)/(Lmo) , m/mo, 
c/c °, which we again denote by m., [3, ~ and x, t, m and c, respectively. After changing to these we will have m0 = 
l a n d ~  = 1. 

In Fig. l(a)  we show the changes with time of the distribution along the longitudinal coordinate x of the colmataged 
fraction of the pore space P =  1 - s for ~ ~ 0.5 m/hour and c o = 0.0007; fore the lower curve t = 5, for the middle 
curve t = 15 and for the upper curve t = 25. The small circles in Fig. 1 are experimental data [10]. The parameters 
I~ and m.  were equal to 26.0 and 0.7, respectively. The effect of the input concentration c o on P(x) is shown in Fig. 
l (b)  for the same values of v, [3 and m. as above and t = 10; for the lower curve c o = 0.0007 and for the upper 
curve c o = 0.0014. In Fig. l(c)  we show graphs of P(x) for t = 10, c o = 0.0007 and the previous values of [3 and rn., 
but for two rates of input of  the suspension: x) ~ 0.5 m/hour for the lower curve and 1.4 times greater for the upper 
curve. 

Comparison with experiment shows that the model employed describes the distribution of the volume of particles 
captured from the flow over space and time quite well. It  also correctly takes into account the input concentration. 
It can be seen that the seepage rate is the important parameter, while the linear dependence on it used here does 
not only have a theoretical meaning. The linearized approximation [8] does not give such agreement with experiment 
[10]. 

The results of experiment [10] relate to those times when the simple-wave zone, described by representations 
(2.1)-(2.6), has not yet sufficiently developed. For such regimes, as noted in Section 2, a characteristic feature is 
the presence of inflection points. In Fig. 2 we show two groups of curves, calculated from (5.1) and (5.2). The first 
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of  these (the continuous curves) describes the changes in the reduced concentration in the flow direction, and the 
second (the dashed curves) represents the permeabilities. Here o ~- 0.5 m/hour, 13 = 26, m. = 0.7 and c o = 0.0007. 
We chose as the values of the dimensionless time the time at which an inflection point occurs in the concentration 
profile at the input to the sample, i.e. t = 38 (curves 1), and the multiples of this: t = 114 (curves 2) and t = 190 
(curves 3). The experimental curves behave in a similar way, when the times taken for the simple-wave zone to 
develop are reached. 

The pressure drop at the input and at the point x relates essentially to the corresponding value of the pressure 
1 drop in the motion of the pure fluid, i.e. top(0, 0) - p ( x ,  O) = ~tokff x. Taking relations (1.5), (1.6) and (5.1) into 

account, in dimensionless variables this relative pressure drop can be written in the form 

l~v(x' t)=![mo+(l_dmY)s(xy,  t)] ~ 

In Fig. 3, for n = 3 and c o = 0.00005, we show Ap as a function of the dimensionless time for various values of 
x. The points indicate experimental data [11, 1] for the case of the total pressure drop. Here 13 and m., obtained 
by comparing the calculated and experimental concentration profiles, were equal to 9 and 0.5, respectively. Hence, 
themodel  also qualitatively correctly describes the pressure dynamics during colmatage. 

In conclusion, we point out the following. If the input concentrations c o are sufficiently small, then, up to a certain 
instant of time, behind the front the concentration profile is simply shifted along the flow. The changes in the 
parameter b with time from (5.2), related to this, only have an effect when the suspension reaches the exit from 
the sample. During the following instants a good approximation to relations (5.1) and (5.2) is the relation obtained 
previously [1] for the case m. = 0. 

c = c o {I + [exp(~(l - m,)x)- l]exp(-[~cOt) }-! 
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